//go:build !baremetal package board // The simulator for a generic board. It can simulate various kinds of hardware, // like: // * event badges // * GameBoy-like handhelds (Game Boy Advance, PyBadge) // * smartwatches // * boards with only a touchscreen (PyPortal). // It is currently mostly made for boards with a display, but this is not at all // a requirement in the API. // // The board API doesn't use a mainloop of any kind, which would not be // necessary anyway on embedded systems. But it is necessary on OSes, so to work // around this the simulator is actually run in a separate process by starting // the current process again and communicating over pipes (stdin/stdout in the // simulator process). import ( "bufio" "fmt" "image" "image/color" "io" "math/rand" "os" "strconv" "strings" "sync" "fyne.io/fyne/v2" "fyne.io/fyne/v2/app" "fyne.io/fyne/v2/canvas" "fyne.io/fyne/v2/container" "fyne.io/fyne/v2/driver/desktop" "fyne.io/fyne/v2/layout" "fyne.io/fyne/v2/widget" "golang.org/x/image/draw" ) const runWindowCommand = "run-simulator-window" func init() { if len(os.Args) >= 2 && os.Args[1] == runWindowCommand { // This is the simulator process. // Run the entire window in an init function, because that's the only // way to do this with the API that is exposed by the board package. windowMain() os.Exit(0) } } var ( displayImageLock sync.Mutex displayImage *image.RGBA displayScrollTopFixed int displayScrollBottomFixed int displayScrollLine int displayMaxBrightness = 1 displayBrightness = 0 ledsLock sync.Mutex leds []color.RGBA ledsPerRow = 6 ) // The main function for the window process. func windowMain() { // Create a raster image to use as a display buffer. displayImage = image.NewRGBA(image.Rect(0, 0, 240, 240)) display := &displayWidget{} display.Generator = func(w, h int) image.Image { displayImageLock.Lock() defer displayImageLock.Unlock() img := image.NewRGBA(image.Rect(0, 0, w, h)) draw.Draw(img, image.Rect(0, 0, w, h), image.NewUniform(color.RGBA{ R: 192, G: 192, B: 192, A: 255, }), image.Pt(0, 0), draw.Over) rect := displayImage.Bounds() scale := h / rect.Dy() width := rect.Dx() * scale height := rect.Dy() * scale x := (w - width) / 2 y := (h - height) / 2 displayRect := image.Rect(x, y, x+width, y+height) if displayBrightness <= 0 { // The backlight is off, so indicate this by making the screen gray. draw.Draw(img, displayRect, image.NewUniform(color.RGBA{ R: 96, G: 96, B: 96, A: 255, }), image.Pt(0, 0), draw.Src) } else { // Draw the display as usual. scrolledImage := displayImage if displayScrollLine != 0 { // Hardware scrolling is in use, so scroll the middle part of // the screen. scrolledImage = image.NewRGBA(displayImage.Rect) topH := displayScrollTopFixed bottomH := displayScrollBottomFixed childH := rect.Dy() - topH - bottomH rotated := displayScrollLine - topH rotatedUpH := childH - rotated rotatedDownH := childH - rotatedUpH draw.Copy(scrolledImage, image.Pt(0, 0), displayImage, image.Rect(0, 0, rect.Dx(), topH), draw.Over, nil) // top fixed area draw.Copy(scrolledImage, image.Pt(0, topH), displayImage, image.Rect(0, topH+rotatedDownH, rect.Dx(), topH+childH), draw.Over, nil) // rotated up part draw.Copy(scrolledImage, image.Pt(0, topH+rotatedUpH), displayImage, image.Rect(0, topH, rect.Dx(), topH+rotatedDownH), draw.Over, nil) // rotated down part draw.Copy(scrolledImage, image.Pt(0, rect.Dy()-bottomH), displayImage, image.Rect(0, rect.Dy()-bottomH, rect.Dx(), bottomH), draw.Over, nil) // bottom fixed area } draw.NearestNeighbor.Scale(img, displayRect, scrolledImage, scrolledImage.Bounds(), draw.Src, nil) } return img } // Create LEDs. ledsWidget := canvas.NewRaster(func(w, h int) image.Image { ledsLock.Lock() defer ledsLock.Unlock() img := image.NewRGBA(image.Rect(0, 0, w, h)) // Draw all the LEDs as squares, each 24 pixels in size with an 8 pixel // gap. rows := (len(leds) + ledsPerRow - 1) / ledsPerRow scale := float64(h) / float64(rows*32) col := 0 row := 0 for _, c := range leds { x0 := int(float64(8+col*32) * scale) x1 := int(float64(8+col*32+24) * scale) y0 := int(float64(row*32) * scale) y1 := int(float64(row*32+24) * scale) area := image.Rect(x0, y0, x1, y1) draw.Draw(img, area, image.NewUniform(c), image.Pt(0, 0), draw.Src) col++ if col >= ledsPerRow { col = 0 row++ } } return img }) ledsWidget.Hidden = true // X/Y/Z acceleration. // Simulate the device in an upright position (like how you'd hold a phone // when making a photo in portrait mode). var accelX, accelY, accelZ = 0.0, 1.0, 0.0 accelContainer := container.New(layout.NewHBoxLayout(), widget.NewLabel(strconv.FormatFloat(accelX, 'f', 2, 64)), widget.NewLabel(strconv.FormatFloat(accelY, 'f', 2, 64)), widget.NewLabel(strconv.FormatFloat(accelZ, 'f', 2, 64))) fmt.Printf("accel %f %f %f\n", accelX, accelY, accelZ) // Step count. var stepCount uint32 stepCountWidget := widget.NewLabel("0") stepCountIncrementButton := widget.NewButton("+", func() { stepCount++ stepCountWidget.SetText(strconv.FormatUint(uint64(stepCount), 10)) fmt.Printf("steps %d\n", stepCount) }) stepCountContainer := container.New(layout.NewHBoxLayout(), stepCountWidget, layout.NewSpacer(), stepCountIncrementButton) paramGrid := container.New(layout.NewGridLayout(2), widget.NewLabel("Accel X/Y/Z:"), accelContainer, widget.NewLabel("Steps:"), stepCountContainer) // Create a window. a := app.New() w := a.NewWindow("Simulator") w.SetPadded(false) w.SetFixedSize(true) w.SetContent(fyne.NewContainerWithLayout(layout.NewVBoxLayout(), display, ledsWidget, paramGrid)) // Listen for keyboard events, and translate them to board API keycodes. if deskCanvas, ok := w.Canvas().(desktop.Canvas); ok { deskCanvas.SetOnKeyDown(func(event *fyne.KeyEvent) { key := decodeFyneKey(event.Name) if key != NoKey { fmt.Printf("keypress %d\n", key) } }) deskCanvas.SetOnKeyUp(func(event *fyne.KeyEvent) { key := decodeFyneKey(event.Name) if key != NoKey { fmt.Printf("keyrelease %d\n", key) } }) } // Listen for events from the parent process (which includes display data). go windowReceiveEvents(w, display, ledsWidget) // Show the window. w.ShowAndRun() } // Goroutine that listens for commands from the parent process. func windowReceiveEvents(w fyne.Window, display *displayWidget, ledsWidget *canvas.Raster) { r := bufio.NewReader(os.Stdin) for { line, err := r.ReadString('\n') if err != nil { if err != io.EOF { fmt.Fprintln(os.Stderr, "unexpected error:", err) os.Exit(1) } os.Exit(0) } cmd := strings.Fields(line)[0] switch cmd { case "display": var width, height int fmt.Sscanf(line, "%s %d %d\n", &cmd, &width, &height) newImage := image.NewRGBA(image.Rect(0, 0, width, height)) for y := 0; y < height; y++ { for x := 0; x < width; x++ { r := rand.Uint32() newImage.SetRGBA(x, y, color.RGBA{ R: uint8(r >> 0), G: uint8(r >> 8), B: uint8(r >> 16), A: 255, }) } } displayImageLock.Lock() displayImage = newImage display.SetMinSize(fyne.NewSize(float32(width), float32(height))) displayImageLock.Unlock() case "display-brightness": displayImageLock.Lock() fmt.Sscanf(line, "%s %d %d\n", &cmd, &displayBrightness, displayMaxBrightness) displayImageLock.Unlock() display.Refresh() case "title": w.SetTitle(strings.TrimSpace(line[len("title"):])) case "draw": // Read the image data (which is a single line). var startX, startY, width int fmt.Sscanf(line, "%s %d %d %d\n", &cmd, &startX, &startY, &width) buf := make([]byte, width*3) io.ReadFull(r, buf) // Draw the image data to the image buffer. displayImageLock.Lock() for x := 0; x < width; x++ { displayImage.SetRGBA(startX+x, startY, color.RGBA{ R: buf[x*3+0], G: buf[x*3+1], B: buf[x*3+2], A: 255, }) } displayImageLock.Unlock() display.Refresh() case "scroll-start": displayImageLock.Lock() fmt.Sscanf(line, "%s %d %d\n", &cmd, &displayScrollTopFixed, &displayScrollBottomFixed) displayImageLock.Unlock() display.Refresh() case "scroll": displayImageLock.Lock() fmt.Sscanf(line, "%s %d\n", &cmd, &displayScrollLine) displayImageLock.Unlock() display.Refresh() case "scroll-stop": displayImageLock.Lock() displayScrollLine = 0 displayScrollTopFixed = 0 displayScrollBottomFixed = 0 displayImageLock.Unlock() display.Refresh() case "addressable-leds": // Read the LED data. var numLEDs int fmt.Sscanf(line, "%s %d\n", &cmd, &numLEDs) buf := make([]byte, numLEDs*3) io.ReadFull(r, buf) // Update the leds slice. ledsLock.Lock() if len(leds) != numLEDs { // LEDs were configured for the first time (probably). // Make sure we prepare for the given number of LEDs. leds = make([]color.RGBA, numLEDs) cols := ledsPerRow if cols > len(leds) { cols = len(leds) } rows := (len(leds) + ledsPerRow - 1) / ledsPerRow ledsWidget.SetMinSize(fyne.NewSize(float32(cols*32+8), float32(rows*32))) ledsWidget.Show() } for i := range leds { leds[len(leds)-i-1] = color.RGBA{ R: gammaEncodeTable[buf[i*3+0]], G: gammaEncodeTable[buf[i*3+1]], B: gammaEncodeTable[buf[i*3+2]], A: 255, } } ledsLock.Unlock() ledsWidget.Refresh() default: fmt.Fprintln(os.Stderr, "unknown command:", cmd) } } } func decodeFyneKey(key fyne.KeyName) KeyEvent { var e KeyEvent switch key { case fyne.KeyLeft: e = KeyLeft case fyne.KeyRight: e = KeyRight case fyne.KeyUp: e = KeyUp case fyne.KeyDown: e = KeyDown case fyne.KeyEscape: e = KeyEscape case fyne.KeyReturn: e = KeyEnter case fyne.KeySpace: e = KeySpace case fyne.KeyA: e = KeyA case fyne.KeyB: e = KeyB default: return NoKeyEvent } return e } var _ desktop.Mouseable = (*displayWidget)(nil) var _ fyne.Draggable = (*displayWidget)(nil) // Wrapper for canvas.Render that sends mouse events to the parent process. type displayWidget struct { canvas.Raster } func (r *displayWidget) CreateRenderer() fyne.WidgetRenderer { return widget.NewSimpleRenderer(&r.Raster) } func (r *displayWidget) MouseDown(event *desktop.MouseEvent) { if event.Button == desktop.MouseButtonPrimary { fmt.Printf("mousedown %d %d\n", int(event.Position.X), int(event.Position.Y)) } } func (r *displayWidget) MouseUp(event *desktop.MouseEvent) { if event.Button == desktop.MouseButtonPrimary { fmt.Printf("mouseup\n") } } func (r *displayWidget) Dragged(event *fyne.DragEvent) { fmt.Printf("mousemove %d %d\n", int(event.PointEvent.Position.X), int(event.PointEvent.Position.Y)) } func (r *displayWidget) DragEnd() { // handled in MouseUp } // Gamma brightness lookup table: // https://victornpb.github.io/gamma-table-generator // gamma = 0.45 steps = 256 range = 0-255 var gammaEncodeTable = [256]uint8{ 0, 21, 28, 34, 39, 43, 46, 50, 53, 56, 59, 61, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 85, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150, 151, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159, 160, 160, 161, 162, 163, 164, 164, 165, 166, 167, 167, 168, 169, 170, 170, 171, 172, 173, 173, 174, 175, 175, 176, 177, 178, 178, 179, 180, 180, 181, 182, 182, 183, 184, 184, 185, 186, 186, 187, 188, 188, 189, 190, 190, 191, 192, 192, 193, 194, 194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 200, 201, 202, 202, 203, 203, 204, 205, 205, 206, 206, 207, 207, 208, 209, 209, 210, 210, 211, 212, 212, 213, 213, 214, 214, 215, 215, 216, 217, 217, 218, 218, 219, 219, 220, 220, 221, 221, 222, 223, 223, 224, 224, 225, 225, 226, 226, 227, 227, 228, 228, 229, 229, 230, 230, 231, 231, 232, 232, 233, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 248, 248, 249, 249, 249, 250, 250, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255, }